GNSS Solutions • November/December 2012
NonGaussian NoisesWhat about Gaussian vs. nonGaussian noise in inertial/GNSS integration?“GNSS Solutions” is a regular column featuring questions and answers
about technical aspects of GNSS. Readers are invited to send their
questions to the columnist, Dr. Mark Petovello, Department of Geomatics
Engineering, University of Calgary, who will find experts to answer
them. mark.petovello@ucalgary.ca
Share via: Slashdot Technorati Twitter Facebook View the Equations for this article Various designs of inertial/GNSS integrated navigation systems exist, with different architectures depending on the quality of sensors, the mission, the dynamics of the vehicle, and the nonlinearity of the dynamics model, measurement model, or both. The techniques and solutions used for integration are generally “loosely coupled,” “tightly coupled,” “ultra tightly,” and “deeply coupled” navigation systems. Figure 1 illustrates a loosely coupled INS/GNSS architecture under nonGaussian measurement noise. However, before selecting the best system architecture for an integrated navigation system (INS), we should first calculate the lower bound of state estimation exactly, if possible, or approximately if it requires heavy and/or complex mathematical operations. In general, let us consider a system for which a lower bound is sought (in our case, an inertial/GNSS system): Equation (1) where x is the state vector being estimated, f(x) represents the system model, w is the process noise with covariance matrix Q, z is the measurement vector, h(x) is the measurement model, and η is the measurement noise with covariance matrix R. For linear systems with uncorrelated white Gaussian process and measurement noises, the lower bound is called the Cramer Rao Lower Bound (CRLB). The definition of CRLB is based on the Fisher Information Matrix, which in turn is defined as: Equation (2) where p(x,z) is the likelihood function. The main advantage to calculating the CRLB is to determine the value of the best estimation of the state variables amongst all estimators. This provides advance information about whether the goals of a system are achievable or not. Specifically, CRLB is calculated offline around the true state values. When these values are not available, online approximation techniques must be developed using the estimated values instead of the true ones. (For details, see the article by L. Zuo, R. Niu, and P. K. Varshney listed in the Additional Resources section at the end of this article.) This article focuses on filtering algorithms applied to inertial/GNSS integrated navigation systems based on nonlinear dynamic inertial kinematic models and the calculation of their corresponding approximated lower bounds. Inertial measurement units (IMUs) typically contain three orthogonal rategyroscopes and three orthogonal accelerometers, measuring angular velocity and linear acceleration, respectively. Ideally, the output of the rategyroscopes is written as Equation (3) In practice, however, the outputs contain errors and are written as Equation (4) Integrating these angular rates over time yields the updated attitude information for the system:
Equation (5) Similarly, accelerometers outputs can be written as Equation (7) Two integrations subsequently yield velocity and position updates as follows:
Equation (8) where g is the estimated gravity vector and Δt is the data period. Collectively, equations (3) to (9) describe the system model. For the purpose of our discussion here, the measurement model is assumed to consist of GNSSobserved position (P_{GNSS}), velocity (V_{GNSS}), and attitude (A_{GNSS}) — the latter derived using a multiple antenna system. Correspondingly, we can write the observation matrix as Equation (10) Having defined the relevant models, let’s look at two ways to approximate the lower bound. The first assumes Gaussian errors and uses the nonlinear approximation of the Kalman filter called the extended Kalman filter (EKF). The second approach considers the full nonlinear model and nonGaussian errors.
Approximating the CRLB Using an Extended Kalman Filter
Equation (11) Where F_{k}=∇_{xk}ƒ^{T}_{xk}(x_{k}) is the Jacobian matrix of ƒ^{T}_{xk}(x_{k}) and H_{k}=∇_{xk}h^{T}_{xk}(x_{k}) is the Jacobian matrix of h^{T}_{xk}(x_{k}) and P_{0} is the covariance matrix of the initial estimate. Comparing these equations with the update step in an EKF, it is clear that the approximated CRLB for nonlinear state estimation is exactly analogous to the EKF covariance matrix, replacing the state estimate with its real value. Based on this, experienced users of extended Kalman filters — and other variants of nonlinear filters — can approximate the CRLB directly using wellknown EKF equations. For example, Figure 2 shows the approximated CRLB for the east velocity and yaw attitude along with the corresponding mean square error (MSE) computed using an EKF, an unscented Kalman filter (UKF), a central difference Kalman filter (CDKF) and the cubature Kalman filter (CKF). (See the articles by I. Arasaratnam and S. Haykin, and also O. Straka, J. Dun´ık, and M. Simandl listed in Additional Resources.)
Approximating CRLB for NonLinear Systems in the Presence of NonGaussian Errors To this end, the best nonGaussian noise model that has been presented in specialized literature is the Huber estimator (in the article by C. Karlgaard and H. Schaubt, Additional Resources) using a robust estimator algorithm, which is able to handle multipath GNSS signals as well as intentional and unintentional interferences. Before explaining the approximation of the lower bound, let us describe the method used to estimate state variables when nonGaussian errors are present. In this case, nonlinear filtering variants given in previous sections do not perform well and need to be transformed into robust forms resilient to nonGaussian measurement errors. Amongst the different Bayesian estimation algorithms, the particle filter is the most generic since it can handle nonGaussian errors as well as nonlinear systems. However, developing an accuracy bound for this case is very difficult. Instead, a technique called Gaussian mixture filter is applied to EKF, Sigma Point KF (SPKF) and CKF (as discussed in the article by I. Arasaratnam et alia, 2007). Gaussian mixture models are based on the representation of any nonGaussian distribution as the sum of multiple Gaussian densities with different “weights.” For the inertial/GNSS algorithm discussed here, the noise is assumed to be composed of two Gaussian components. With this in mind, two approximations to the CRLB are possible, as described in the following sections.
Use of Kullback–Leibler Approach to Gaussian Mixture Reduction The KullbackLeibler (KL) discrimination of probability density functions f_{2} from f_{1} is defined by Equation (14) Suppose we are given the following mixture of two Gaussian components:
Equation (15) with which we need to approximate this mixture by a single Gaussian density. The best and easiest candidate for this approximation is given by the Gaussian density with mean μ and variance P. Based on the minimal KullbackLeibler discrimination principle, a strong and direct candidate to this approximation is given by
Equation (17) We can then approximate the CRLB using equations 11–13, thus yielding the posterior CRLB (PCRLB) of nonlinear Gaussian systems. Effectively, this approach is based on transforming the nonGaussian nonlinear estimation of an inertial/GNSS integrated navigation system into the classic wellknown nonlinear estimation problem under Gaussian assumptions (see Figure 3).
Use of Gaussian Mixture Approach to Approximate CRLB under NonGaussian Noises Assumption The idea here is to obtain an optimal approximation based on parallel optimal estimations. In this way, inertial/GNSS integrated navigation systems could be implemented using the approximated optimal lower bound when the Gaussian assumption is not followed. Sample results of this are shown in Figure 5. As can be seen, the differences between Gaussian mixture EKF (GMEKF) and the approximated CRLB (ACRLB) are nearly the same, as expected. However, if we use a standard EKF, the results are considerably worse because the filter is not designed to handle nonGaussian errors. This demonstrates the effectiveness of properly selecting the estimation algorithm based on the input noise characteristics.
Summary
Additional Resources Copyright © 2017 Gibbons Media & Research LLC, all rights reserved. 
